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ABSTRACT

The relationship between spin dynamics and conductivity in polyaniline has
been investigated as a function of temperature. The spin dynamics behavior has
been studied from the frequency dependence of the ESR line width, which gives the
electron spin-spin relaxation time (T¢). The data can be explained in terms of quasi
1-D spin diffusion with two parameters: the intrachain (D), and the interchain (D))
spin diffusion rates. Our remarkable finding is that the dc conductivity agrees quite
well with the interchain diffusion rate D, both as a function of the protonation level y
and as a function of temperature. Further, the charge carrier concentration is
suggested to be temperature dependent.

INTRODUCTION

Polyaniline (PANI) is well known for its remarkable insulator-to-conductor
transition as a function of protonation. Upon protonation of the emeraldine form of
polyaniline the conductivity increases by 10 orders of magnitude while the number of
electrons on the polymer chains remains constant [1]. Accompanying this transition
a spin susceptibility appears [2], which is of Pauli type and is proportional to the pro-
tonation level [3]. Then, a granular polymeric metal model [3] has been proposed
that the conducting state was made of metallic particles embedded in an unproto-
nated insulating sea. Besides, evidence for disorder has been pointed out, and it has
been suggested that a description in terms of a Fermi glass might be more appropri-
ate [4,5]. Recently it was confirmed by a spin dynamics technique with magnetic
resonances that this insulator-to-conductor transition is percolative in origin, consis-
tent with the granular model, but that "conducting island" consists of only single or
very few polymer chain(s). Spin dynamics makes possible to study the spin motion of
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polaron having both spin and charge. Therefore, spin dynamics enables us to study
the conductivity in a microscopic scale. Usefulness of spin dynamics has been
shown in many cases investigating non-linear excitations in polymer; soliton [6,7]
and polaron [8). In a previous study, based on the parallel variation of the interchain
spin diffusion rate D, and of the dc measured conductivity (c) as a function of pro-
tonation, we have concluded that ¢ is dominated by interchain diffusion [9,10]. In the
present paper we report further investigations of spin dynamics and conductivity in
PANI. In particular, we show that the parallel variation of D, and o is not only valid
as a function of the protonation level, but also as a function of temperature.

EXPERIMENTAL

PANI powder was synthesized by well known technique reported by MacDi-
armid et al [11]. After equilibrating it with ammonium solution, the sample with de-
sired protonation level was prepared by equilibrating with HCl solution of appropri-
ate pH. Protonation level y (=CI/N) was determined by chemical analysis. ESR Tge
was determined with use of ESR line width at frequencies from 10 to 24,000 MHz by a
home-built spectrometer [12].

RESULTS AND DISCUSSION

Figure 1 shows a typical experimental data for the ESR line width as a function
of N5 at temperatures from 78 to 300 K, where the solid curves represent least
square fits with the T9¢-1 expression

T2e'! = CR2[0.3£(0)+0.55(we)+0.2f(200¢)] (6))

where for the motion spectrum f(w) a quasi 1-D diffusion behavior has been as-

sumed;

Tyl e () = 1 1+\] 1+(w/2D,)? @
1 ~ 2D, Dy, V 1+w/2D)2

where the result of anisotropic random walk model was used [13]. In the present
analysis we use only the transverse diffusion rate D,, which can be determined pre-
cisely only by the functional form of eqs.(1) and (2). This procedure suppresses the
uncertainty related to the proportional coefficient in eq. (1). In the previous paper
[9,10], it has been shown that the microscopic conductivity Op, deduced from D, as a
function of the protonation level y agrees quite well with the measured 6. These facts
strongly suggest that ¢ is dominated by interchain diffusion.

The temperature dependence of D, is shown in Fig. 2 and Fig. 3 for y=0.62 and
0.27, respectively. For y=0.62, the interchain diffusion rate D, agrees quite well with
o, but in the case y=0.27 a good agreement is found only for T > 250 K. At lower tem-
perature the decay of D, for y=0.27 seems to saturate to a limiting value of ~10-°
rad/sec. This can be ascribed to a spin exchange contribution to the cutoff frequency
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Fig. 1. (Left) ESR line width as a function of frequency. A least square fit was applied
to determine AHpp.

Fig. 2. (Right) Temperature dependence of D, and (dc measured) o for y=0.62.

of the 1-D diffusion. Spin exchange is expected to be independent of temperature and
an increasing function of the spin concentration. For y=0.62, this effect is not notice-
able because the diffusion rate D, is one order of magnitude larger. It is important
to take into account the different contributions to D,: interchain diffusion, interchain
spin exchange, and (mainly intrachain) spin-spin dipolar coupling [14].

As in Ref. 9 we can estimate the microscopic conductivity from D, with the rela-
tion Op, = ne2D,/kpT, where n is the carrier concentration. Figure 4 shows the esti-
mated conductivity Op, deduced from D, together with the measured o, as a function
of temperature for y=0.62, where the constant carrier concentration n=3.7x1021 (cm-3)
was used. For y=0.27, the parallel variation of Op, and ¢ is limited to the range T >
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Fig. 3. (Left) Temperature dependence of D, and (d¢c measured) ¢ for y=0.27.

Fig. 4. (Right) Microscopic conductivity O, calculated from D, and conductivity for

y=0.62.
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250 K (due to the influence of interchain spin exchange). We note that a better agree-
ment for the temperature dependence is obtained between ¢ and D, than between ¢
and Op, . This suggests that the effective charge carrier concentration could be tem-
perature dependent (roughly neT).

In conclusion, the present study in complement to earlier published data [9,10],
supplies evidence that the conductivity in PANI is governed by the interchain charge
hoppings. This may explain the moderate value of the conductivity usually mea-
sured.
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