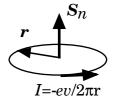
常磁性磁化率

磁気モーメント 電子の軌道運動とスピン

軌道磁気モーメント μ は、円電流Iとその面積ベクトルSnを用いて

$$\mu = \mu_0 I S_n$$
 (SI: EH), $\mu = I S_n$ (SI: EB), $\mu = \frac{1}{c} I S_n$ (cgs G)



と表せる(下のコラム参照). 円電流の値を代入して(以降 SI: EB)、

$$\mu = IS_n = -\frac{ev\pi r^2}{2\pi r} = -\frac{evr}{2} = -\frac{e}{2m_e}m_evr$$

が得られる。互いに直交する運動量 $m_e v \, c \, r \, o$ 積は角運動量に相当するので、それを $m_e v r = \ell \hbar \, c$ 書くと、軌道磁気モーメントは

$$\mu = -rac{e\hbar}{2m_e}\ell = -\mu_{
m B}\ell$$
 (: 軌道角運動量ベクトル)

で与えられる。一方、電子スピンの場合は上式の様に $\mu_B L$ の比例係数が -1 ではなく、 Diracの相対論的電子論より比例係数は -g=-2.0023 で与えられ、

 $e/c = 1.6 \times 10^{-20}$ $e=4.8 \times 10^{-10}$ esu $c=3 \times 10^{10}$ cm/s

となることが知られている。ここで、

$$\mu_{\rm B} = \frac{e\hbar}{2m_{\rm e}} = 9.274 \times 10^{-24} \ ({\rm J}\,/\,{\rm T}), \ \mu_{\rm B} = \frac{e\hbar}{2m_{\rm e}c} = 9.274 \times 10^{-21} \ ({\rm cgs}\ {\rm G:\ erg}\,/\,{\rm G})$$

を、ボーア磁子(Bohr magneton)と呼ぶ。また、磁気モーメントと角運動量

の比例係数を磁気回転比(gyromagnetic ratio or magnetogyric ratio)

$$\gamma = \frac{g(-e)}{2m_e}$$

 $\begin{array}{ccc} s & l=0 \\ p & l=1 \\ d & l=2 \\ f & l=3 \end{array}$

下図の様な、一辺が l の正方形の閉電流が磁場の中で受ける力を考えてみよう。いま磁場 H は辺 AB または CD および面 ABCD の法線 n と平行な面内にあり、n は H に対し角 θ をなすものとする。辺 AB および CD に作用する力 F' は大きさが等しく方向が反対であるため、吊り合っている。BC、AD 辺の電流に作用する力 F は偶力を形成し、そのモーメントは(θ 増大の方向を正とする)

$$N = -Fl\sin\theta = -IBl^2\sin\theta = -IBS_n\sin\theta, \text{ (SI: EB)}$$
 (1)

$$N = -Fl\sin\theta = -\frac{I}{c}Bl^2\sin\theta = -\frac{I}{c}BS_n\sin\theta$$
, (cgs G)

となる。ここに S_n は閉電流の面積で、n は電流の正の方向を右回りとする法線方向にとる。この式は、閉電流の形が正方形でない場合にも有効である。磁場中の磁気モーメントに働くトルクN は

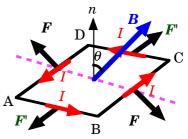
2

$$N = -\frac{dE}{d\theta} = \frac{d(\boldsymbol{\mu} \bullet \boldsymbol{B})}{d\theta} = \mu B \frac{d(\cos \theta)}{d\theta} = -\mu B \sin \theta$$

なので、(1)と比較して、磁気モーメントが電流を用いて

$$\mu = IS_n$$
, $\left(\mu = \frac{IS_n}{c} \text{ (cgs G)}\right)$

と書けることがわかる。



12/10/10

と呼ぶ。陽子の場合には、 $m_e \rightarrow M_P$ と置き換えて、

$$\gamma_{
m P}=rac{g_{
m P}e}{2M_{
m P}}$$
、 $g_{
m P}=2.790$ となる。また、核磁子を $\mu_{
m N}=rac{e\hbar}{2M_{
m P}}=0.505 imes10^{-26}$ J/T と定義する

$$\begin{split} m_e &= 9.11 \text{x} 10^{\text{-}31} \text{ Kg} \\ M_{\text{P}} &= 1.67 \text{x} 10^{\text{-}27} \text{ Kg} \\ 1\text{C} &= 3.00 \text{x} 10^9 \text{ esu} \\ e &= 1.6 \text{x} 10^{\text{-}19} \text{ C} \\ \hbar &= 1.05 \text{x} 10^{\text{-}34} \text{ J} \bullet \text{s} \\ \gamma_e &= 1.76 \text{x} 10^{11} \text{ s}^{\text{-}1} \text{T}^{\text{-}1} \end{split}$$

Landé のg-因子

スピンと軌道角運動量の両方がある時に、自由電子のスピン及び軌道角運動量をそれぞれsとlで、またそれらのベクトル和をjで表すと、全磁気モーメントは $\mu=-\mu_{\rm B}(l+2s)$ で与えられる。このベクトルが全角運動量ベクトルj=l+sの向きとは異なることを考慮すると、観測にかかるj方向成分 $\mu_{\rm J}$ を、 $\mu_{\rm J}$ と $\mu_{\rm B}$ j の比例係数であるLandé のg-因子 g_j を使って $\mu_{\rm J}=-g_{\rm J}\mu_{\rm B}$ j と表すことができる。なお、磁気モーメントのj に垂直な成分 $\mu_{\rm L}$ は歳差運動により平均化される。そこで、 $-\mu_{\rm J}/\mu_{\rm B}=(l+2s)_{\rm J}=(j+s)_{\rm J}=j+s_{\rm J}=g_{\rm J}$ j より、

Landé のg-因子は

$$g_j = 1 + \frac{s_j}{j} = 1 + \frac{\mathbf{s} \cdot \mathbf{j}}{\mathbf{j} \cdot \mathbf{j}} = 1 + \alpha$$

となる α を求めれば良い. $s \bullet j = \alpha j \bullet j = \alpha j (j+1) (j \bullet j = j^2 \sigma$ 期待値はj(j+1))なので、

$$g_J = 1 + \alpha = \frac{3}{2} + \frac{s(s+1) - l(l+1)}{2j(j+1)}$$
 が得られる.

角運動量 1 の磁場中の運動方程式は、

 $\hbar \frac{d\boldsymbol{l}}{dt} = [\mu_l \times \boldsymbol{B}_{eff}]$ で与えられる。ここで $\mu_l = \mu_B \boldsymbol{l}$ 、

 $m{B}_{e\!f\!f}$ は、スピン軌道相互作用

$$H=\lambda \pmb{l} \cdot \pmb{s} = \mu_{\mathrm{B}} \pmb{l} \cdot \lambda \frac{\pmb{s}}{\mu_{\mathrm{B}}} = -\mu_{l} \cdot B_{\mathit{eff}}$$
 より、 $\pmb{B}_{\mathit{eff}} = -\lambda \frac{\pmb{s}}{\mu_{\mathrm{B}}}$ と得られる。

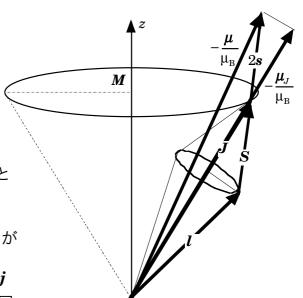
従って、
$$\hbar \frac{d\mathbf{l}}{dt} = [\mu_{\mathrm{B}}\mathbf{l} \times \left(-\lambda \frac{\mathbf{s}}{\mu_{\mathrm{B}}}\right)] = \lambda[\mathbf{s} \times \mathbf{l}] = \lambda[\mathbf{j} \times \mathbf{l}]$$
 が

得られる($: \mathbf{l} \times \mathbf{l} = 0$)。この式は、有効磁場 $\lambda \mathbf{j}$ の周りを角運動量 \mathbf{l} が歳差運動することを示す。同様に、スピン角運動量 \mathbf{s} は、磁気モーメント μ_{l} の

作る磁場の周りを同じ角速度で歳差運動する。

$$\hbar \frac{ds}{dt} = [\mu_s \times \mathbf{B}_{eff}] = \lambda[\mathbf{I} \times \mathbf{s}] = \lambda[\mathbf{j} \times \mathbf{s}]$$
より、**I** に

もs にも同じトルク[j imes l]= [s imes l]が働くため、同じ周期で歳差運動する。



3 12/10/10

フント則

3d遷移元素のように、スピンと軌道角運動量を持つ場合には、原子の取り得る状態は LS 多重項と呼ばれ、多くの値を取り得る。その中で、最も安定な状態が経験的規則とし てF. Hundによって与えられ、フント則と呼ばれ、2つの項にまとめられる。

- 1) 一つの電子配置に付いてはSが最大である多重項が最低エネルギーを持つ、
- 2) 最大のSを与える多重項が複数あれば、そのうちLが最大のものが最低のエネルギーを持つ

これらのルールは実験的に見いだされた。 1) の原因 は、互いのスピンが平行であると、パウリの排他率の為に 異なる m_i を取り、互いの距離が離れ、原子内クーロン反 発エネルギーを減少させる効果がある為である。そのため に、強磁性的な原子内交換相互作用 $H=-j\mathbf{s}_i \bullet \mathbf{s}_i$, (j>0) が 働く。

υ-2, θα υγγη									
m_s	2	1	0	-1	-2				
+1/2	1	1	1	↑	1				
-1/2	↓	↓							

1=2 3d7の例

$$J = |L + S| = 3 + \frac{3}{2} = \frac{9}{2}$$

2 は、S 最大の多重項で成立。定性的にはスピン軌道相互作用で理解出来る。即ち、lの大きさが大きいほど相互作用エネルギーの得分が増大する。

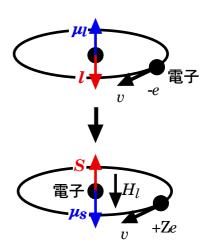
スピンと軌道の角運動量がどのように合成されるかを知るには、1つの電子のスピンと その軌道運動がどのように結合するかを考える。-e の電荷を持つ電子が図のように軌道運 動をすると、**下**(上)向きの**角運動量**(**軌道磁気**)モーメントが発生する。反対に、電子を 中心にして考えると、正電荷を持つ原子核が下の図のように回転しているように見える。

この原子核の軌道運動は、電子の位置に下向きの磁場を誘起 し、電子スピン磁気モーメントと逆向きのスピン角運動量は 軌道角運動量と反平行の場合にエネルギーが下がり、

$$H_{sl} = -\zeta \mathbf{l} \bullet (-\mathbf{s}) = \zeta \mathbf{l} \bullet \mathbf{s}$$
、 $\zeta = \frac{\mu_0 Z_{eff}}{8\pi} \left(\frac{e\hbar}{m}\right)^2 \left\langle \frac{1}{r^3} \right\rangle$

と書ける。従って、n 個の電子を持つ原子では、

$$H_{sl} = \sum_{i} \varsigma \; \boldsymbol{l}_{i} \bullet \boldsymbol{s}_{i} = \lambda \boldsymbol{L} \bullet \boldsymbol{S}$$
 と書ける。



交換積分 電子の波動関数(スレーター行列)

$$\psi(1,2,\cdots z) = rac{1}{\sqrt{n!}} \begin{vmatrix} \phi_1(r_1)\chi_1(\sigma) & \bullet \bullet \bullet & \phi_n(r_1)\chi_z(\sigma) \\ \vdots & \bullet \bullet \bullet & \vdots \\ \phi_1(r_z)\chi_1(\sigma) & \bullet \bullet \bullet & \phi_n(r_z)\chi_z(\sigma) \end{vmatrix}$$
で $\sum_{j=1}^n \sum_{k>j}^n \frac{2}{r_{jk}}$ を挟んで積分する。

$$E_C = 2\sum_{j=1}^n \sum_{k>j}^n \iint \left\{ \frac{{m \Psi}_j^*({m r}_1){m \Psi}_j({m r}_1){m \Psi}_k^*({m r}_2){m \Psi}_k({m r}_2)}{{m r}_{12}} \right\} d{m r}_1 d{m r}_2$$
、クーロン積分

12/10/10

スピン軌道相互作用

原子核の周囲を回転する電子の軌道運動が、軌道磁気モーメント $-\mu_B l$ を発生させる。一方で、相対論的見地から見ると、電子の周りを電荷 Ze を持つ原子核が回転している。この正電荷の作る電流が、電子の位置に Biot-Savart の法則に従って磁場を発生させる。

$$\boldsymbol{B}_{Ze} = \frac{\mu_0 Ze}{4\pi} \frac{(\boldsymbol{r} \times \boldsymbol{v})}{r^3} = \frac{\mu_0 Ze\hbar}{4\pi m} \frac{1}{r^3} \boldsymbol{l} \quad (1)$$

この磁場による電子スピンのゼーマンエネルギーは電子の $g=-g_S=-2$ を用いて、

$$H_{so} = -\boldsymbol{\mu}_{S} \bullet \boldsymbol{B}_{Ze} = -g\mu_{B}\boldsymbol{s} \bullet \boldsymbol{B}_{Ze} = g_{S}\mu_{B}\boldsymbol{s} \bullet \boldsymbol{B}_{Ze} = \frac{\mu_{0}Ze\hbar}{4\pi m} \frac{1}{r^{3}} g_{S}\mu_{B}\boldsymbol{s} \bullet \boldsymbol{l} \Rightarrow \frac{\mu_{0}Z_{eff}}{8\pi} \left(\frac{e\hbar}{m}\right)^{2} \frac{1}{r^{3}} \boldsymbol{s} \bullet \boldsymbol{l} \quad (2)$$

で与えられる(係数 1/2 は相対論的補正)。核電荷 $Z_{
m eff}$ は、電子による遮蔽効果(トーマスの補正)を考慮した値を示す。(2) の係数を ζ とおいて、スピン軌道相互作用を

$$H_{so} = \varsigma \quad \mathbf{s} \bullet \mathbf{l} \quad (\varsigma > 0), \quad \varsigma = \frac{\mu_0 Z_{eff}}{8\pi} \left(\frac{e\hbar}{m}\right)^2 \left\langle \frac{1}{r^3} \right\rangle, \quad (\text{cgs} \sharp \sharp, \quad e \Rightarrow e/c, \quad \mu_0/4\pi \Rightarrow 1)$$
 (3)

で表す。符号から分かるように、電子スピンと軌道磁気モーメントは反平行向きに揃う。

3d 遷移元素

3d 遷移金属元素の全角運動量はどの様になるだろうか。 l=2 であり、2l+1=5 重に縮退した軌道にd 電子が n=1 から 9 まで詰まっていく時、その全角運動量は、スピン軌道相互作用の符号によって決まる。(3) 式の1電子のスピン軌道相互作用を3d 遷移元素に当てはめて考えよう。 $n \le 2l+1$ の場合とn > 2l+1 の場合に分けて和を取る。

$$H_{so} = \varsigma \sum_{i}^{n} \mathbf{s}_{i} \bullet \mathbf{l}_{i} = \varsigma \left(\mathbf{s}_{i} \bullet \sum_{i \leq 2l+1} \mathbf{l}_{i} + \mathbf{s}_{i} \bullet \sum_{i \geq 2l+1} \mathbf{l}_{i} \right)$$

フント則に従ってn 電子の和を取ると、 $n \le 2l+1$ の場合は第 1項のみで、 $s_i = 1/2$ 、 $\Sigma s_i = S = n/2$ で且つ $s_i // S$ から、 $s_i = S/2$ とおける。 $L = \sum l_i$ 、 $\lambda = \zeta/2S$ と置くと、

$$H_{so} = \lambda S \bullet L, \quad (\lambda = \varsigma / 2S > 0)$$

となり、全スピンSと全軌道Lのそれぞれの角運動量ベクトルは反平行になる。従って、全角運動量Jは、

$$J = |L - S|, \qquad (n \le 2l + 1)$$

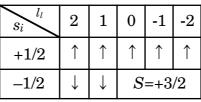
となる。一方、n > 2l+1 の場合は n = 2l+1 までの第1項の和 が $L=\Sigma l_i=0$ から消える。第2項は $s_i=-1/2$ 、S=(10-n)/2 と、 s_i と S は反平行なので $s_i=-S/(10-n)=-S/2S$ から、

$$H_{so} = -\lambda S \cdot L$$
, $(\lambda = \varsigma / 2S > 0)$

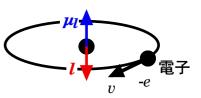
となる。従って $oldsymbol{S}$ と $oldsymbol{L}$ は平行になり、全角運動量 $oldsymbol{J}$ は、

$$J = |L + S|$$
、 $(n > 2l+1)$ で与えられる。

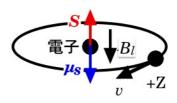
以上の内容を纏めると、相対 論的効果として生じるスピン軌



n=7 の例



スピン軌道相互作用: 電子スピンが核の周りを 公転し、軌道角運動量ベクトル \boldsymbol{l} と反平行の向き に軌道磁気モーメント $\boldsymbol{\mu}_{l}$ を作る。



相対論的に眺めると、正電荷 +Ze の核電荷が電子の周りを公転し磁場 Bze を l の方向に作り、電子スピン磁気モーメント μ s を μ l と反平行にする。その結果、電子スピン s と軌道 l のそれぞれの角運動量ベクトルは互いに反平行になる。

道相互作用の符号は、一つの電子のスピンと軌道の角運動量を反平行にする方向に働く。 しかし、3d 遷移元素においてフント則に従う場合は、全電子の和がスピンと軌道の相対 方向を決めることに注意しなければならない。

less-than-half $(n \le 2l+1)$ の場合、全電子スピンの和 S は単純に s_i の電子数 n 倍で、 l_i の和 L の向きもフント則に従う限り変化しない。従って、less-than-half の場合は、スピン軌道相互作用の符号は l つの電子の場合と変わらない。

しかし、more-than-half (n>2l+1) の原子においては、n=5 までの5つの電子のスピン軌道相互作用エネルギーの和がゼロになる為、スピン軌道相互作用はn>2l+1 の電子のみによって担われる。しかし、n>2l+1 の場合であっても、各電子は1 電子のスピン軌道相互作用 $H_{\infty}=c$ $s \bullet l$ に従う事は変わらない。

この時に、 $n \le 2l+1$ の場合と比較して最も重要な違いは、n > 2l+1 の各電子のスピン s_i の向きが全スピン角運動量 $S = \Sigma s_i$ とは反平行を向いていることにある。スピン軌道相 互作用 $H_{so} = \varsigma$ $s_i \bullet l_i$ のために s_i と l_i は反平行になるが、 s_i と逆向きの S は l_i と平行で L とも平行になる。その結果、合計のスピン軌道相互作用定数 λ は負になり、強磁性的な相互作用を与える。

フント則に従う、孤立した 3d イオンの角運動量

$n_{ m e}$	1	2	3	4	5	6	7	8	9
S	1/2	1	3/2	2	5/2	2	3/2	1	1/2
L	2	3	3	2	0	2	3	3	2
J	3/2	2	3/2	0	5/2	4	9/2	4	5/2
λ =ζ/2S	ζ	C /2	ζ/3	ζ/4	ζ/5	- ζ/4	-ζ /3	-ζ /2	-ζ
$Z_{ m eff}$	7	8.1	9	9.8	10	11	12.5	13.2	14
r_1^3/r_n^3	1	1.4	1.7	2.2	2.2	2.3	2.5	2.5	2.3
λ_n/λ_1	1	0.7	0.56	0.55	0.44	-0.9	-1.5	-2.35	-4.6

	${ m Ti}^{3+}$	V^{3+}	Cr^{3+}	Mn ³⁺	Cr^{2+}	Fe^{2+}	Co ²⁺	Ni ²⁺	Cu ²⁺
n_e	1	2	3	4	4	6	7	8	9
$\lambda (cm^{-1})$	154	104	87	85	57	-100	-180	-335	-828
λ_n/λ_1	1	0.67	0.56	0.55	0.55	-0.65	-1.17	-2.2	-5.4

6 12/10/10